Ejercicios Resueltos Operadores Matemáticos - YUDOC

Hola amigos, en esta web se suben materiales de todo tipo de mayor interés Educativos

Ejercicios Resueltos Operadores Matemáticos

 

 CONCEPTO: Es un procedimiento matemático que sirve para transformar, sujeto a ciertas reglas, una o varias cantidades en otras; basándonos en el principio de valor numérico; es decir, cambiando letras por números. OPERADOR: Es un símbolo arbitrario que sirve para representar a una determinada operación matemática y esta sujeto a una determinada regla de definición. OPERACIÓN MATEMATICA: Consiste en la asociación de una pareja de números para obtener uno nuevo que es resultado de la operación. La adición, sustracción, multiplicación y división son ejemplos de operaciones matemáticas. Se pueden definir “nuevas operaciones” asignándoles un operador que las distinga de las que ya conocemos, empleándose por lo general un asterisco (*) o cualquier otro símbolo. No debemos olvidar que cada “nuevo” operador debe acompañarse de la regla o ley de formación que la define. ESTRUCTURA: Operador a * b = a + b + ab Operación binaria Ley de formación Ejemplo 1: Si se define la operación a  b según la regla siguiente: a  b = a + b + 2ab Hallar: 3  5 Resolución: Para operar 3  5 ; reemplazamos a = 3 y b = 5; en la regla de definición dada:  3  5 = 3 + 5 + 2( 3 x 5 ) = 8 + 2(15) = 8 + 30 = 38 • NOTA: Si se trata de operar ( 1  2 )  4, se procede por partes y desde los símbolos de colección; es decir, empezando por la pareja entre paréntesis. OPERACIONES DEFINIDAS POR TABLAS: En lugar de una ley de formación, para obtener el resultado, la operación binaria puede presentar estos resultados en una tabla. Ejemplo 2: Para números enteros definimos las siguientes operaciones: a * b = a2 – b ; a  b = 3ª - b2; y a b = 2a +3b Si x * x = 12 ; y  y = - 10 ; Hallar el valor de x y ; para x e y positivos Resolución: Aplicando la operación a* b en x * x, tenemos: x2 - x = 12 x2 - x – 12 = 0 ( x – 4 ) ( x + 3 ) = 0  x = 4; x = -3 Aplicando la operación a  b en y  y , tenemos: 3y – y2 = - 10 y2 – 3y – 10 = 0 (y – 5) (y + 2) = 0  y = 5 ; y = -2  como x e y deben ser positivos: x y = 4 5 = 2 (4) + 3 (5) = 23 Ejemplo 3: Dada la tabla * 7 5 2 3 7 5 4 8 8 3 1 9 10 1 2 Hallar:  ( 8 * 7 ) * 5  * 2 Resolución: Partimos de la operación binaria a * b de modo que el primer elemento se ubica en la primera columna y el segundo elemento en la primera fila. Por lo que el resultado de 8 * 7 se ubica en la intersección de estos números. * 7 8 8 Es decir que: 8 * 7 = 8  nos queda ( 8 * 5 ) * 2 Procediendo de manera semejante, tenemos que 8 * 5 = 3 Finalmente: 3 * 2 = 4 Ejemplo 4: Se define la operación a  b, según la tabla adjunta.  1 2 3 4 1 1 2 3 4 2 2 3 4 5 3 3 4 5 6 4 4 5 6 7 Hallar: ( 4  7 )  ( 6  3 ) Resolución: En la tabla no encontramos el resultado para 4  7 ; pero como los elementos distribuidos en el interior de la tabla son resultados de una ley de formación para una operación binaria, nuestra tarea será ahora hallarla. De la tabla observamos que: 1  3 = 3 que proviene de 1 + 3 - 1 2  4 = 5 2 + 4 – 1 4  3 = 6 4 + 3 – 1 Generalizando: a  b = a + b - 1  4  7 = 4 + 7 – 1 = 10 6  3 = 6 + 3 – 1 = 8 Finalmente: 10  8 = 10 + 8 – 1 = 17 OPERACIONES COMO FUNCIONES: Probablemente se recordará la típica frase “f de x”; de 

No hay comentarios:

Publicar un comentario